
Adapatable Forecasting Framework in Real-tiMe (AFFIRM)

A thesis presented for an MRes degree in Artificial Intelligence-enabled Healthcare Systems

Candidate number: KFPR2

University College London

Institute of Health Informatics

1st September 2021



1

Abstract

This thesis presents the first attempt to predict atrial fibrillation (AF) in the Intensive Care Unit

(ICU) within hours using machine learning. New-onset AF in the ICU is correlated with a longer

length of stay and a greater chance of mortality. Being able to predict whether a patient will

suffer an adverse event, such as AF, can allow early treatment of at-risk patients. In this project,

a framework called Adaptable Forecasting Framework in Real-tiMe (AFFIRM) was developed

for such adverse event predictions.

AFFIRM is an end-to-end pipeline that takes raw time series patient data from High time-

Resolution ICU Dataset (HiRID), and trains a machine learning model to predict adverse events

during a patient’s ICU stay.

For AF prediction, AFFIRM was trained on the data from 31236 patients, 2341 of which devel-

oped AF at least two hours after admission. Classification of AF is a particularly challenging

task due to several factors: (1) the lack of formal definition of new-onset AF; (2) AF time points

cannot be labelled after data collection because AF must be diagnosed from an electrocardio-

gram (ECG); (3) AF can be transient and asymptomatic and easily missed by clinicians; (4)

only around 5.47% of time points are labelled with AF (when data is grouped every two hours),

creating a large data imbalance. Despite these difficulties, AFFIRM achieved an area under the

precision-recall curve (AUPRC) of 0.59 ± 0.01, with a ratio of one false alert for every true alert

and 2.6 missed alerts for every true alert. This value is comparable to state-of-the-art prediction

models for circulatory failure (AUPRC = 0.63) and acute kidney injury (AUPRC = 0.297).1,2

In agreement with previous literature, the most predictive variables for AF were increased age,

increased heart rate and low mean arterial pressure.

AFFIRM was also used to predict two other events tachycardia and circulatory failure, achieving

AUPRCs of 0.91 ± 0.00 and 0.60 ± 0.01 respectively. Circulatory failure prediction achieved

better results than AF prediction despite having an even more imbalanced dataset verifying that

AF is uniquely difficult to predict in advance.

Keywords: Atrial Fibrillation, Event Prediction, Machine Learning, ICU, Electronic Health

Records



Glossary

Adaptable Forecasting Framework in Real-tiMe (AFFIRM) The machine learning end-to-

end pipeline developed in this project. It makes adverse event predictions in the ICU..

1, 18, 19, 24, 26, 39–42, 44–46

Amsterdam University Medical Centers Database (AmsterdamUMCdb) Critical care dataset

of over 20,000 patients from hospitals in the Netherlands. 6

Area Under the Precision-Recall Curve (AUPRC) A machine learning metric that is appro-

priate for identifying rare events such as AF incidences.. 12, 29, 32, 34–36, 40, 41, 44,

45

Area Under the Receiver Operating Characteristic Curve (AUROC) A machine learning

metric that is measures the proportion of correct predictions.. 32, 36

Atrial Fibrillation (AF) The most common form of cardiac arrythmia. The condition causes

and irregular and/or fast heartbeat.. 1, 7–13, 15, 16, 19–26, 30, 32, 34–41, 44–46

Body Mass Index (BMI) A measure of height and weight which assesses whether a person is

underweight, healthy, overweight or obese.. 19

Clinical Decision Support Systems (CDSS) Technology designed to assist clinicians and im-

prove patient care.. 6, 7

Electrocardiogram (ECG) A medical test used to check the heart’s rhythm and electrical ac-

tivity. It is currently the only way to confirm an atrial fibrillation diagnosis.. 1, 8, 10, 13,

22, 46
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Electronic Health Record (EHR) Any electronic document containing information on a pa-

tient’s health. 6, 7, 12, 13, 46

Electronic Intensive Care Unit (eICU) Multi-center critical care database of over 100,000 pa-

tients made by Philips Healthcare in partnership with the MIT. 6

eXtreme Gradient Boosting (XGBoost) Machine learning framework that uses gradient boost-

ing decision trees.. 26, 27, 29, 30, 32, 34–38, 40–45

High time-Resolution ICU Dataset (HiRID) A critical care dataset containing patient data

from over 30,000 patients from Bern University Hospital ICU.. 1, 6, 13–19, 23, 30, 44–46

Intensive Care Unit (ICU) Hospital ward for treating critically ill patients. 1, 6, 8, 9, 12, 15,

16, 23, 25, 26, 30, 35, 44, 46

International Classification of Diseases (ICD) Originally used as medical billing codes. ICD

codes are used globally to categorise patients’ health conditions.. 6

Light Gradient Boosting Machine (LightGBM) Machine learning framework that uses gradi-

ent boosting decision trees.. 26, 27, 29, 30, 32, 35, 36, 44

Machine Learning (ML) A form of artificial intelligence. It comprises of algorithms that can

learn patterns in data to perform tasks that it is not implicitly programmed for such as event

prediction.. 6–10, 12, 15, 17, 25, 26, 28–30, 44, 45

Medical Information Mart for Intensive Care (MIMIC) A critical care dataset containing

patient data from over 40,000 patients from ICU of the Beth Israel Deaconess Medical

Center. 6, 14, 46

SHapley Additive exPlanations (SHAP) Values calculated that interpret the impact of different

features for a machine learning prediction or outcome.. 13, 17, 26, 27, 29, 38, 39, 41–43,

45
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Chapter 1

Introduction

1.1 Machine Learning and Electronic Health Records

The amount of Electronic Health Record (EHR) data has increased rapidly with technological

innovation. This has resulted in better record keeping and easier sharing of patient data between

healthcare systems. EHRs were originally used for medical billing, reliant on International Clas-

sification of Diseases (ICD) hospital codes. ICD codes fail to capture the status of the patient

which is often too complex to be denoted by a single code, and patient status can change through-

out their hospital stay. However, EHRs can also contain a variety of different data including vital

signs and laboratory test results which can be leveraged for machine learning (ML) research.

Particularly, there is a large amount of patient data that can be collected from intensive care units

(ICU), due to intensive patient monitoring. This has prompted the creation of large openly avail-

able Intensive Care Unit (ICU) datasets including: Medical Information Mart for Intensive Care

(MIMIC),3 Amsterdam University Medical Centers Database (AmsterdamUMCdb)4 , Electronic

Intensive Care Unit (eICU)5 and High time-Resolution ICU Dataset (HiRID).1 These databases

contain time-series data, which is produced by recording successive measurements of quantities

over time such as heart rate or temperature.

Clinicians are exposed to a large amount of patient information, particularly in the intensive care

unit. Humans have a limited ability to remember vast quantities of information and it is also

impossible for them to closely monitor many patients at once.

Clinical Decision Support Systems (CDSS) were designed to assist clinicians in their day-to-day

tasks. For example, CDSS can help minimise errors in data entry by specifying a range for a
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variable e.g. patient temperature must be between ∼ 35-40 degrees Celsius. CDSS may also

alert the clinician if a monitored value dips below or exceeds a suitable range e.g. if the patients’

heart rate drops to less than 50 beats per minute.

There are two types of CDSS, knowledge-based and non-knowledge based. Knowledge-based

CDSS were created based on prior knowledge and “if-then” rules e.g. if variable x is elevated

then prescribe y drug. Non-knowledge-based CDSS is based on ML.

If adverse event prediction ML models can be sufficiently trained and rigorously tested, then they

could be used to efficiently aid intensive care clinicians. ML would be able to make decisions

personalised to the patient and, in theory, provide better patients outcomes. Currently, there is

no such machine learning CDSS tools used in practice as, much like clinical drug trials, ML

tools must be evaluated over many years before deployment. Moreover, ML models tend to use

“black boxes” to make decisions on data which means the models cannot be explained. Ethically,

it is also unclear who is responsible if a machine learning model causes a negative outcome.

The difficulty in explaining ML decisions and the lack of accountability are major hurdles to

employing ML models as CDSS.

Many ML models have been trained on EHR data to predict adverse events continuously over a

patients’ hospital stay, however, such methods have yet to be applied to atrial fibrillation (AF)

prediction.6−7

1.2 Atrial Fibrillation

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia, with a lifetime risk of

25%. AF occurs when the electrical signals that maintain heart rhythm start to fire more rapidly

and chaotically, leading to an increased and abnormal heart rhythm.8,9 Some people can live for

years with AF without problems, however, without treatment, AF can cause the heart to work

less efficiently leading to heart failure and blood clots. AF condition is independently correlated

with a 3-5 fold increased risk of stroke10 and double the risk of mortality.9

There is currently no known cause for AF however it is associated with several conditions. Risk

factors for developing AF in the community include advanced age, heart disease and recent

cardiac surgery. In 10% of cases, no underlying heart disease is found and, in these cases, there

is an indication that factors such as alcohol, stress, electrolyte imbalances, infections and genetic
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factors may also increase the risk of AF. In some cases, no cause can be found.

AF is diagnosed using an electrocardiogram which captures the electrical impulses that travel

through the cardiac muscle. The aim for treating AF is regaining normal heart rhythm and con-

trolling heart rate which is called cardioversion. Cardioversion can be achieved using medica-

tions called rate or rhythm control drugs. Rate control drugs reduce the heart rate while rhythm

control drugs help to return the heart to a normal rhythm. Rhythm control drugs may have ad-

verse side effects and patients require monitoring when they take such drugs. Anticoagulants

may also be administered to reduce the risk of blood clots and stroke. If these drugs fail to cor-

rect or control AF, patients may be defibrillated, this is electrical cardioversion when an electrical

signal is sent to the heart to restart it. Defibrillation is often successful, but the heart can revert

to AF so it must still be controlled using drugs.11

It is also common for cardioversion to never succeed and the patient will have permanent AF and

their condition must be managed using drugs. AF can also be transient lasting for only a few

hours at a time.

1.3 Atrial Fibrillation in Critically Ill Patients
ICU patients frequently develop AF as a complication of critical illness; the incidence of new-

onset AF ranges from 5% to 46%.12−13 New-onset AF is, therefore, a marker of disease severity

and has been shown to lead to a longer length of stay and higher risk of morbidity. While there

are extensive guidelines in treating AF in a community setting, there is insufficient evidence to

make recommendations about a standard treatment for patients in the ICU.11 Not only is it more

difficult to restore a critically ill patient’s heart rate to normal rhythm14 , but also medication

options are more limited depending on the patient’s co-morbidities.15

AF is a condition that can be easily misdiagnosed due to its similarity with other arrhythmias.16

Furthermore, AF can only be diagnosed using an electrocardiogram (ECG), as such transient

episodes of AF may be undiagnosed.17 Undiagnosed and misdiagnosed AF can lead to late

treatment which puts the patient at greater risk of further complication.

1.4 Rationale
Evidence shows that new-onset AF may be preventable.18 Given that critically ill patients that

develop new-onset AF have a longer length of stay in the ICU and higher mortality; an ML event
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prediction model for AF would be valuable.19−20 Furthermore, as AF is likely a predictor of

disease severity, early prediction of AF will highlight which patients’ conditions will deteriorate.

While risk factors for AF in the community are known, factors that contribute to new-onset AF

are yet to be confirmed. Creating an explainable ML model may also illuminate which patient

variables are causing patients to develop AF.

1.5 Project Aims and Objectives
This project aims to create a pipeline that will preprocess raw ICU time-series quickly and make

a prediction on whether a patient will develop AF within the next few hours. The prediction will

be made using a binary classifier model that should satisfy three criteria to maximise its clinical

usefulness for intensivists: (1) change over time dependent on new data; (2) rely on modifiable

variables such as electrolyte levels that can be adjusted by a clinician, as well as static factors;

(3) be transparent by ranking variable importance in prediction.

Additionally, the preprocessing pipeline and prediction model must be easy to use and generalise

to predict other adverse events with varying hours of prediction into the future and with different

binary classifiers. This will allow other health data scientists to make baseline predictions before

optimising their models for a specific task.



Chapter 2

Literature Review

2.1 Machine Learning for AF Classification

The focus of applying machine learning (ML) to atrial fibrillation (AF) has been for the detec-

tion/classification of electrocardiogram (ECG). AF ECG signals can often be mistaken for other

arrhythmia. Also transient and/or asymptomatic episodes of AF can go unnoticed.21,22

Hannun et al. developed a deep learning convolutional neural network classifier that detects

and distinguishes between 12 different heart rhythm classes, including AF. The neural network

was trained on expert annotated single-lead ECGs. The resulting model was able to exceed

the positive predictive value of an average cardiologist, F1-score = 0.837 vs 0.780. While the

results of this paper are highly impressive, it is noted that AF and other heart rhythm classes

are diagnosed with a 12-lead ECG rather than a single-lead. Therefore, the annotations from

cardiologists may be inaccurate and hence lead the average cardiologist, who would usually

examine 12-lead ECGs, to perform worse than the model.21

Attia et al. used 650,000 12-lead ECGs to train a convolutional neural network that could identify

AF. However, the performance of this network was much lower than that of Hannun et al. with

an F1-score = 0.392.22 This suggests that 12-lead ECGs are harder to diagnose than single-lead.

The Apple Heart Study is conducting an ongoing study monitoring ∼ 400,000 consenting Apple

Watch customers, for cardiac arrhythmia. Apple watches can measure pulse rate from the wrist

using photoplethysmography which can identify pulse irregularity or variability. The results of

this study can inform AF screening in the population. Screening AF early can potentially inform

management, increase the probability of successful cardioversion and in turn reduce future costs
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and burdens to the health system. However, if the precision of this technology is insufficient, then

the greater proportion of the population will be screened unnecessarily for AF, thereby increasing

the burden on the health system.23

2.2 Rule-based AF Prediction

While there has been significant progress in AF detection/classification using ML, there is limited

innovation in ML-based AF prediction. Predicting future AF may illuminate how it develops in

the first place. By gaining such knowledge, there is a potential to prevent AF before it occurs. The

majority of AF prediction models use rule-based risk scores calculated from static features, such

as age, sex and pre-existing conditions, to predict AF within years.24−25 Alonso et al. created

the CHARGE-AF risk score, a simple risk score that predicts AF in the population using features

such as age, race, height, weight, blood pressure, medication and pre-existing conditions. They

validated their risk score on a diverse population of over 20,000 people and found discrimination

between case and control of 60-70%.26−27

Similarly, Saliba et al. used the existing CHADS2 and CHA2DS2-VASc risk scores, originally

designed to predict the risk of stroke in AF, to predict new-onset AF in the population. These

scores are calculated using age, sex and pre-existing conditions such as congestive heart failure.

They studied around one million adults for an average of three years each. They found that the

incident rate of AF increased with increasing CHADS2 and CHA2DS2-VASc scores.24

Christophersen et al. compared the CHARGE–AF and CHA2DS2-VASc risk scores and found

that CHARGE-AF performs better in both discrimination and calibration. CHARGE–AF is re-

garded as the most validated and most accurate rule-based risk score for AF.26

Hill et al. created a machine learning prediction model based on primary care data collected

from 3 million people with no history of AF in the five years before the study. As well as

static data, the authors examined temporal data such as read codes and blood pressure within a

rolling 12-month window. They followed the patients until AF diagnosis, death, loss to follow-

up or the end of the study. They compared several machine learning models: neural network,

random forest, SVM and logistic regression. They chose to use the neural network based on

the AUROC scores for each model. The authors conclude that their neural network had greater

precision and accuracy than CHARGE-AF. In this paper, they only describe the neural network
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as “time-varying” but do not describe the type of neural network they used or the architecture of

the network. They also do not describe any data preprocessing steps before the use of their ML

algorithm. Furthermore, AUROC is an inappropriate metric for comparing their ML models as

there is a large imbalance between the number of patients who develop AF and those who do not.

It would be more appropriate to measure the Area Under the Precision-Recall Curve (AUPRC)

or use F1-scores.

Tiwari et al. used Electronic Health Record (EHR) data from 2 million individuals to classify

whether they would develop AF within six months. Using a shallow neural network on 200 EHR

features only yielded a result slightly better than using logistic regression on age, sex and known

AF risk factors.28

Karnik et al. used free-text and coded EHR data to predict AF within 1, 3, 5 and all years. The

text-based dataset achieved the best model with an F1-score of 0.601 where the coded data did

not significantly increase performance.

While these studies are useful for preventative guidance, they are limited in clinical usefulness

in the Intensive Care Unit (ICU) as clinicians require a short-term assessment of their patients

within hours or days.29 Furthermore, these predictions are based on static features which clini-

cians cannot treat or manage. Currently, several rule-based scoring systems are used in the ICU

including APACHE, SOFA and Glasgow Coma Scale however, there is no such score for AF.

2.3 Atrial Fibrillation Risk Factors in the ICU

Several studies have identified risk factors associated with new-onset AF. New-onset AF is more

common in patients with electrolyte derangement and greater disease severity.30−31 Inflamma-

tion may also damage cardiac muscle tissue which leads to atrial contractile dysfunction, causing

AF.32 Elevated levels of adrenaline and noradrenaline, a consequence of greater illness severity,

are also associated with AF development.33 Comparisons, using echocardiography, showed that

patients with new-onset AF have a larger left atrium than those who had no AF where enlarged

left atrial size is thought to be associated with diastolic dysfunction.34 The patient population

sizes of these studies were limited so the exact causes of AF remain unknown.35 ML can detect

patterns in data that are not accessible to humans, which makes it suitable for defining person-

alised disease risk factors.36
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2.4 Event Prediction Using Machine Learning

Using time-series databases, machine learning time point classification models have been de-

veloped to predict diseases and events including sepsis37 , acute kidney injury2 and circulatory

failure.1 For the prediction of events in the future, labels are brought forward in time.

Tomašev et al. developed an early prediction model for acute kidney injury within 48 hours. Out

of over 700,000 patients, the model could predict 55.8% of acute kidney injury episodes. The

rolling predictions occurred within 6 hour time windows. They transformed the high dimensional

patient data into a lower-dimensional representation using embedding. The embeddings were fed

into a recurrent neural network which in turn was fed into a final prediction layer.

Hyland et al. created an early warning system for circulatory failure using the High time-

Resolution ICU Dataset (HiRID).1 Their system used machine learning to provide a rolling

prediction of cardiovascular failure within eight hours, every five minutes. They found that a

LightGBM classifier resulted in the best performance, they predicted 90% of circulatory failure

events and predicted 82% more than two hours in advance. The authors also used shapelets, time

series subsequences, to improve their model’s predictive power. Features used in the model were

ranked by importance for each prediction using SHapley Additive exPlanations (SHAP) values,

to increase the transparency of their model.38

This project aims to create a warning system similar to that of Tomašev et al. and Hyland et

al., applied to AF prediction. AF event prediction poses additional challenges as it must be

diagnosed using ECGs and cannot be diagnosed directly from EHR data. Therefore, AF labels

must be created during the patient’s stay and cannot be annotated AFterwards like most other

conditions. Furthermore, AF can be transient and asymptomatic so some episodes of AF may

go undetected. AF usually lasts for hours, however, a clinician who enters AF into the database

may only label AF once rather than for every time point throughout the whole duration of AF.

Another aim of this project is to create a generalised event prediction pipeline. The van der

Schaar lab has already achieved such a pipeline called Clairvoyance.39 Clairvoyance takes static

and temporal patient data to create a rolling prediction of an event. However, Clairvoyance re-

quires data to be inputted with a specific format i.e. a table with columns: patient id, time, patient

variable and value. The authors of Clairvoyance also offer preprocessing code for MIMIC. How-

ever, this project will differ from Clairvoyance by being tailored to take the raw HiRID data



2.4. Event Prediction Using Machine Learning 14

as input as well as allow the user more choices concerning preparing the data. HiRID has a

far greater time-resolution compared to Medical Information Mart for Intensive Care (MIMIC)

which is more beneficial for time-dependent event prediction. HiRID has measurements up to

every two minutes whereas MIMIC data is collected hourly.1



Chapter 3

Method

3.1 Setting
The research setting for this project is the Intensive Care Unit (ICU), where 5-46% of patients de-

velop new-onset atrial fibrillation (AF).12−13 New-onset AF leads to immediate haemodynamic

effects, which requires immediate management of the patient’s condition. A machine learning

(ML) model can be trained on ICU data to evaluate which patients are at high risk of developing

AF during their stay.

3.2 Dataset
This project will use the High time-Resolution ICU Dataset (HiRID), a freely accessible, dei-

dentified, time-series ICU dataset. HiRID was collected between 2008 and 2016 from Bern

University Hospital’s interdisciplinary intensive care unit. The data contains 712 routinely col-

lected physiological variables, test and treatment parameters stored at a high time resolution with

at least one entry every two minutes throughout the patients’ stay.

HiRID was chosen over the other three publicly available large ICU databases (eICU, MIMIC,

AmsterdamUMCdb) because of its distinct advantages for training an ML model for AF pre-

diction. HiRID contains time-stamped episodes of AF which is a necessity for training the ML

model. HiRID also has measurements every 2 minutes which is the highest time resolution out of

all of the public ICU databases. This high time resolution is suitable for time series classification

and, by extension, event prediction.

∼15% (4991/33905) patients in the HiRID database have recorded instances of AF which is

sufficient for ML model development and it is in keeping with the literature case rate suggesting
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that the AF annotations are reliable.

The raw HiRID database is ∼ 6Gb in size and is split into four tables:

• General - Patient information including admission time, age and sex

• Observations table - Timestamped physiological patient measurements

• Pharma records - Timestamped pharmacological information

• Reference - The variables in Observations table and Pharma records are recorded with

IDs. The reference table provides the variable names and units for the variables according

to the ID.

The data structure is illustrated in Fig. 3.1.

Figure 3.1: Database schematic for the high time resolution ICU data set (HiRID)

3.3 Ethics
HiRID is anonymised per HIPAA and GDPR, laws responsible for patient privacy in the US and

individual privacy in the EU, respectively. The anonymisation process consisted of removing

all 18 identifying data elements listed in HIPAA, shifting admission dates into the future and
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binning the patients’ age, height and weight into intervals of five. Furthermore, the dataset does

not include any clinical notes that could potentially contain patient information.

While the previously discussed ML algorithms show promising results, there are still many

boundaries for them to be used in real-world healthcare systems. Issues such as lack of trans-

parency, bias and privacy are problems in all areas for ML research, however, these issues can

have life-threatening consequences when ML is applied in healthcare settings.

Bias in ML can arise from the unbalanced data the models are trained on. For instance, Hyland

et al’s early prediction model was trained on the HiRID database which is collected from Bern

University Hospital in Switzerland. The model is trained on the demographic of the city of Bern

which is predominantly white and affluent. Hence, if the model was deployed in other areas

of the world, the model would be biased against other ethnic groups and potentially produce

harmful predictions. In order, to mitigate bias algorithms must be tested on varieties of groups.

This may be mitigated in future work by evaluating the model on external data. Bias can also

be a result of biased domain knowledge. ML models for healthcare are built with input from

clinicians. However, if the clinicians are biased according to their experience, the models may

also have the same bias.

ML models that do not explain how it comes up with its results are called “black box” models.

Clinicians are unlikely to heed the advice given from black box models because their predictions

may not arise from true patterns seen in the data but confounders. Therefore, ML models must

be transparent and explainable. In EHR research, this involves highlighting which features are

most important during diagnosis e.g. heart rate. If the most important variables seem irrelevant

to the diagnosis, it could be confounding or it could be that the model has discovered a new

correlation. SHapley Additive exPlanations (SHAP) values can rank feature importance during

a binary classification and therefore improve the transparency of the model.

3.4 Design
As mentioned previously, this project aims to use raw HiRID data for event prediction. This

process requires three main steps:

1. Data Preprocessing. A pipeline for preprocessing the raw HiRID data

2. Data Prepararation. A pipeline for preparing the data for binary classification
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3. Event Prediction and Evaluation. A framework that takes the prepared data and evaluates

several different binary classifiers using 10-fold stratified cross-validation. It can then

perform hyperparameter optimisation and calculate feature importance.

These three steps represent parts of the whole pipeline which will be referred to as Adaptable

Forecasting Framework in Real-tiMe (AFFIRM). The next sections will describe how AFFIRM

works, any variables that are required as input into AFFIRM will be written in italics. A summary

of AFFIRM is shown in Fig. 3.2.

Figure 3.2: Overview of the steps involved in the AFFIRM (Adaptable Forecasting Framework In Real-
tiMe) pipeline. AFFIRM consists of a preprocessing pipeline, a data preparation pipeline and
a prediction/evaluation pipeline. The overall pipeline can be easily adapted to predict different
adverse events.

3.4.1 Data Preprocessing

The data was preprocessed to reduce its size by removing unnecessary columns and changing the

format to create a more efficient representation of the data.

The HiRID data is stored in 250 CSV or parquet files. This project used parquet files which

are much faster to read than CSV files. To process the data, the 250 files are looped through

the preprocessing pipeline. The pipeline then saves the 250 preprocessed files inside another

directory.
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The static data is extracted from the raw data for each patient. This includes sex, age, weight and

height. To reduce the number of variables and to create a more meaningful representation of the

patient, the weights and heights were converted to Body Mass Index (BMI) values.

The timestamps for the pharmacological data was changed to minutes since admission with in-

tervals of five minutes. The pharmacological variables were then grouped by drug class using

a manually created annotation. There are over 500 pharmacological variables however most of

the drugs are not unique. Drugs with the same active ingredients have unique variable IDs be-

cause they are recorded with varying dosages, brand names and delivery systems. The amount of

pharmacological data is less than a tenth of the observational data so the drugs were grouped by

drug class to decrease the number of variables with relatively few values. Grouping the variables

by drug class means equating the dosage and the delivery system, therefore the drug classes are

represented by a binary flag describing whether the drug was given or not at a time point.

The timestamps for the observed physiological measurements were similarly converted to min-

utes since admission. Any values that were 0 were removed because they are likely to be errors,

this is apart from variables where 0 is a valid categorical value such as the Glasgow coma scale.

Any variables with different names that represent the same measurement are grouped and can be

specified by defining rename dict. For example, the temperature of the patient is recorded in the

data as core body temperature, rectal temperature and axillary temperature. These variables are

grouped together as temperature.

The variables include patients or exclude patients can be specified in order to include or exclude

patients according to the type of patient i.e. trauma patients. As the number of AF patients is

limited, it was decided to include all types of patients.

The parameter dict allows the user to specify the event labels for example AF is described in

HiRID as a circadian rhythm value of 10. parameter dict could, for example, be changed to

predict circulatory failure by specifying lactate below 2 and mean arterial pressure above 65.

The pipeline also gives the option of adding previously labelled data, which would be necessary

for events that require more complex labelling.

Next, the outliers have to be filtered out. There are two ways to combat outliers, either specifying

a range for each variable or by taking a range of quantiles for the data. Both types of filtering were

tried with similar results, therefore AFFIRM uses quantiles to save the user time as specifying
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ranges for each variable can take a long time and would require domain knowledge. The filtering

takes the values between the 0.01 and the 0.99 quantiles. Then, if the standard deviation is

greater than the mean after the filtering, values between the 0.1 and 0.9 quantiles are taken.

This is because if the standard deviation is greater than the mean, then there are a significant

number of values that are much larger than the mean. These values would be highly unlikely for

physiological measurements, as physiological measurements tend to have a small valid range.

Outliers arise from human error when the clinicians enter the patient data into the database, for

example, one patient’s temperature was erroneously entered as 463 degrees, as this is impossible,

it was most likely meant to represent 46.3 degrees.

The number of observational variables is then reduced. The variable selection must be a balance

between trying to keep as many variables but also discarding any variables that have little data. To

do this, the user can specify percentage patients per variable which the percentage of patients

that have at least one measurement for each value and the avg values each which is the average

number of values that a patient has for each variable. The default values are 0.8 and 2 respectively

which yields around 40 variables.

Finally, all three table types, static, pharmacological and observation are converted from long-

form to wide form data, i.e. the data changes from a table with patient id, time, variable as

columns to a table where patient id and minutes since admission form the index. Fig. 3.3 shows

the difference between the structure of the raw data and the preprocessed data.

Fig. 3.4 shows an example of a patient stay after the data was preprocessed with a few of the

features.

3.4.2 Data Preparation

The 250 preprocessed files of the observation data and pharmacological data are fed through a

data preparation pipeline. The static data is not processed any further during data preparation.

The preparation pipeline first groups any event labels that are close to each other. The proximity

of the labels required for grouping is specified by the user variable group within. When clinicians

label AF, they can only label one time point at a time rather than a range of time points as shown

in Fig. 3.4. It would be inefficient for the clinician to label every single time point for the

duration of the AF however it can be inferred that the patient has continuous AF between the AF

labels. Several recorded AF times are in temporal proximity suggesting that they form the same
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Figure 3.3: A diagram to show the difference between the raw and cleaned data. a) Example of raw data
from one patient, b) Data after processing

Figure 3.4: Example patient stay. Raw AF labels are shown by vertical blue lines. Only a select number
of variables shown.

AF episode. As such, AF times are grouped if they occurred within group within of each other.

Fig. 3.5 illustrates the grouping of the AF labels.

Furthermore, the clinician may not mark the exact start or end of an AF episode. They may even

label one instance of AF during a whole duration. AF often lasts for a few hours, but the time

point labels have a resolution of seconds. To try to combat this, we try to annotate any missing



3.4. Design 22

Figure 3.5: Example patient stay with the AF labels grouped if the AF labels are within two hours of each
other. AF labels shown as blue vertical lines. Only a select number of variables shown.

AF labels. AF is known to coincide with a sudden increase in heart rate or a rapid heart rate (over

100 bpm), Fig. 3.6 also shows that regions of increased heart rate correspond to episodes of AF.

Sometimes AF may be recorded late, this may be due to human error as clinicians diagnose AF

from electrocardiogram (ECG)s. Therefore, if there is a sudden peak in heart rate or the patient

has over 100 bpm within group within number of minutes of an AF label, then those time points

are also labelled with AF.

Figure 3.6: AF annotations including areas of elevated heart rate within two hours of an AF label.

As stated before, the preprocessed data has measurements every five minutes. However, the

majority of physiological measurements were taken over much larger time intervals, resulting

in many missing values in the data. Therefore, to reduce the number of missing values the data

points are further grouped every two hours. Two hours was chosen as it was deemed long enough

to reduce the amount of missing data but also short enough to make more predictions during a
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patient’s ICU stay. The number of hours in which to group the data can be varied by the user

using the grouping hours variable. Patients who developed AF within two hours of admission

or any patients with a length of stay less than two hours were subsequently discounted. Fig. 3.7

shows a histogram describing the distribution of the first AF episode for patients that developed

AF, measured by hours since admission.

The majority of patients develop AF within the first hour, particularly in the first twenty minutes.

It would be difficult to predict which patients will develop AF within the first hour as there

would be insufficient data to predict from. Furthermore, it may be that patients who develop

AF so early in their ICU stay have a pre-existing AF condition. As this project is focused on

new-onset AF, it is beneficial to filter these patients out, despite the loss in case numbers. The

larger the grouping hours, the more patients would have to be discounted. Choosing to group the

data every two hours reduces the number of case-patients from 4991 to 2213. The data can be

grouped using the maximum, minimum or mean of the two hours. For AF, the mean did not have

much predictive power, so the maximum and the minimum values were taken e.g. the heart rate

variable was split into the variables maximum heart rate and minimum heart rate. This resulted in

doubling the number of observation variables, the number of static and pharmacological variables

stayed the same. For some variables, taking the maximum and minimum of the variable over two

hours resulted in the same value, due to infrequent measurements. Any duplicate columns were

subsequently removed. The final number of variables was 83.

Figure 3.7: A figure to show the distribution of the first onset of AF of patients in HiRID, measured by
hours since admission.

Not only does grouping the measurements reduce the amount of missing data, but it also serves

to reduce the number of time points to classify which is necessary due to the large imbalance of

data. There are 2×107 control time points compared to 6×104 (0.28%) case time points when
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the measurements are every five minutes. When the measurements are grouped every two hours,

the number of control time points is 8.3×105 and the case time points are 4.8×104 (5.47%).

The user can also optionally only take the first instance of an event. When patients develop AF

they are far more likely to have it reoccur during their stay. It could therefore be beneficial to

the clinician to only predict the first instance of AF rather than predict all occurrences. However,

taking the first instance of AF will cause the already large data imbalance to increase drastically.

Therefore, all occurrences of AF were kept.

Finally, the data labels must be shifted into the past dependent on the number of hours ahead the

user wants to predict an adverse event (predict hours). As a result of the label shifting, the labels

do not represent the presence of AF but instead the onset of AF within the next predict hours.

Hyland et al. chose to predict circulatory failure eight hours into the future and Tomašev et al.

predict acute kidney injury 48 hours into the future. These time frames were chosen according

to the amount of time before onset the clinicians have to make an effect such as administering a

certain drug in order to prevent the adverse event. As it is currently unclear how to prevent AF,

there is no established time window before onset for which it can be prevented. As a result, the

best amount of time must be deduced based on the known characteristics of onset AF.

Choosing too few hours ahead of time may result in better predictions because the patients’

physiological measurements would be closer to the AF case however, it may not be enough time

for the clinician to act. Choosing too many hours ahead of time, however, decreases the certainty

of when AF will occur. The gap between AF events can range from hours to days, and the

average patient length of stay was ∼ 54 hours, therefore it is likely to be useful to predict AF

within hours rather than days. Therefore a comparison between the number of hours in advance

can be made including 4, 6, 8 and 10 hours. Comparison of results should reveal an optimum

value for predict hours.

3.4.3 Event Prediction and Evaluation

After data preparation, all the data is stored in three separate tables: static, pharmacological and

observations. Grouping the variables every two hours, greatly reduces the size of the tables and

allows for the data to be handled easily rather than looping through 250 files.

A Python class called AFFIRM was created for event prediction. The AFFIRM object takes as

its input the three tables and concatenates all three of them into one dataframe. By keeping the
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three tables separate the user has to option to use the tables separately. Also, the observation

table has far more rows than the other two tables because it has data every five minutes from

the beginning to the end of admission. Whereas the static dataframe only has one data point per

patient and the pharmacological dataframe only has rows with at least one non-missing value.

Therefore, it would be inefficient to store the three tables joined together as there would be many

missing and repeated values.

Previously, all the pharmacological variables were kept in the data because the pharmacological

data was not very large and all the variables could therefore be easily stored. However, many of

the variables are not useful for prediction because of the number of missing values e.g. anaes-

thetic drugs are common in patients whereas only a few patients are prescribed antiparkinsonian

drugs. In this stage, the user can choose which pharmacological variables they are interested in

keeping. Previous, literature suggests that vasopressors and low potassium levels can increase

the chances of AF in the ICU. Therefore, it was important to keep all the vasopressor and potas-

sium information. The other drugs were kept according to the variable pharma quantile. The

number of times each drug class was prescribed was summed, the drugs that had greater than the

pharma quantile of the sum range were kept. For example, the maximum number of drug counts

was the antithrombotic drugs with 475045 counts and the minimum number of drug counts was

chemotherapy drugs with only 381 counts. The default pharma quantile value is 0.75 which is

56586 counts. 12 variables have greater than 56586 counts: anaesthetic, antibiotic, antithrom-

botic drugs, bronchodilators, insulin, magnesium, non-opioid painkillers, nutrition supplements,

opioid painkillers, potassium, vasodilators, vasopressors.

Even after the data preprocessing and data preparation pipelines, there remain missing data points

in the dataframe. Most ML models require no missing data. There are several methods for fill-

ing in the missing data. Interpolation is usually used for chronological data such as this ICU

data because it uses the other time points in the same sequence to plot a polynomial and there-

fore estimate the missing values. However, some patients didn’t have measurements for certain

features, as such those features could not be interpolated. In this use case, interpolation is also

considerably slower than other imputation methods because interpolation must be carried out

patient-wise. A much faster imputation method is simply filling the missing values with the

mean or median for all the data. However, this method highly skews every value towards the
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control time points because there is such a large data imbalance. Light Gradient Boosting Ma-

chine (LightGBM) and eXtreme Gradient Boosting (XGBoost) ML classifiers can handle inputs

with missing values. In initial tests, the performance of these classifiers exceeded other mod-

els that used interpolated or mean/median-imputed data. To handle missing values, LightGBM

and XGBoost simply use zero-imputation, which involves replacing all the missing values with

zeroes. Therefore, zero imputation was chosen to be used for all the data.

After initialising the data, the user can specify some binary classification models to train. AF-

FIRM contains some prebuilt models that can be added by just using some keywords for example

AFFIRM.add model(“lightgbm”) will add a LightGBM model to the framework. The user can

choose LightGBM, XGBoost, logistic regression, random forest and a Keras model. These mod-

els will only have the default classifier parameters and the Keras model is a fully connected

model with three layers of eight nodes. Keras was trained until the validation metric stopped

improving. The user can also add in their own models so that they can explore different types of

binary classifiers or with optimised parameters.

After adding all the models to the framework, they can all be trained and tested. The user can

specify how many folds they want to cross-validate. In this project, 10-fold stratified cross-

validation was used, which means splitting the data and training into nine portions of data with

one portion as the test set, repeated ten times. This is illustrated in Fig. 3.8.

Cross-validation verifies whether the results produced are reliable and consistent. Stratified

cross-validation ensures that there is the same proportion of control and case data points in each

fold. This is especially important for imbalanced data where one fold may not contain any case

data points and therefore not be representative of the whole dataset. After the cross-validation,

receiver operating characteristic curves and precision-recall curves are plotted side by side con-

taining the results of every model. The plots will include a shaded area denoting the standard

deviation of values during each of the validation folds and the mean average values are plotted

as a solid line.

SHAP values can then be calculated for the classifier predictions. SHAP values are a mea-

surement of the contribution of each variable to the classification and therefore explains which

features are most important in the classification. This can be especially significant for AF as

there is no known cause for AF in the ICU. ML can spot patterns that humans cannot, so it may
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Figure 3.8: Illustration of 10-fold cross validation. The data is split into 10 “folds”. With each iteration
one of the folds becomes the validation set and the other folds are the training set. The model
is trained on the training set and validated on the validation set. This happens until each fold
has been validated. The results from each fold is then averaged.

find a variable that has been overlooked by clinicians.

3.5 Binary Classifier models
The performance of six binary classifier models are compared in this project: logistic regression,

Keras, decision tree, random forest, LightGBM and XGBoost. The decision tree model will act

as a baseline with fewer variables, in order to simulate rule-based based on information from

previous literature. The six models are illustrated in Fig. 3.9.

In logistic regression, the inputs x are entered into the model. A weighted sum of the inputs,

h(x) shown in Eq. 3.2 are calculated then entered into a sigmoid function. The sigmoid function,

shown in Eq. 3.1 takes in any input and outputs a value between zero and one which represents

a probability where a probability of one indicates the positive class and the zero indicates the

negative class. The SHAPe of a sigmoid curve is also found in Fig. 3.9.

As the logistic regression model is trained i.e. when the model is given an input, the output

will be compared to the ground truth label then the weights of the equation are updated. The

updated weights will mean that the model has a greater ability to predict the correct class with a
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Figure 3.9: An illustration of the six binary classification models used in this project.

probability. Training is finished when the loss, which is the difference between the ground truth

label and the output, is at a minimum. The process of training is known as gradient descent.

When the logistic regression model is tested, it will output a probability for each test case. The

probabilities above 0.5 will be determined as the positive prediction and below 0.5 will be a

negative prediction.

Eq. 3.2 shows the equation for weighting the inputs.

σ(h) =
1

1+ e−h (3.1)

h(x) = Θ
T X (3.2)

Where h is the weighted inputs, Θ are the weights, X is is the input and σ is the sigmoid function.

Keras is a ML library that allows the user to easily create deep neural networks. In this project,

Keras is used to create a fully connected multilayer perceptron neural network. The neural net-

work receives input and outputs a prediction, in this case, a binary prediction, on the input. Be-

tween the input and output layers is at least one hidden layer. Each node has a linear activation

function that maps the weighted inputs into outputs at each node. The activation function used
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in this project will be ReLU which often achieves the best possible performance. The equation

for ReLU is given in Eq. 3.3.

ReLU(x) =
0, for x < 0

x, for x ≥ 0
(3.3)

Where x is the input data.

The fully connected neural network means all the nodes are interconnected, so all the outputs of a

previous layer become the inputs of the current layer. Similarly to logistic regression, the weights

at each node are updated as the input is fed through the neural network and compared with a

ground truth label. Deep learning models, such as those built with the Keras library, can be more

powerful than other ML models. Deep learning models are especially useful for processing more

complex data such as images. Due to the relatively few features and small dataset, a deep learning

model may not be the best model because it may overfit the small dataset. This is because deep

learning models work by abstracting data through neural network layers. These relatively simple

EHR variables do not have significant “hidden” information, unlike images. Furthermore, the

more complex a deep learning model becomes, the slower the computation time. Considering

these factors, several different Keras models will be compared where the number of layers and

the number of nodes will be varied to see which has the best performance. Also, the abstraction

of information in deep learning means that it is difficult to explain deep learning predictions and

ML requires transparency, especially in healthcare. On the other hand, all the other models are

easily explained using SHAP values.38 Six Keras model architectures will be compared, these

will comprise of either two or three hidden layers of 8, 16 and 64 nodes. For simplicity, the same

number of nodes will be used for each layer. The models will be trained until the Area Under the

Precision-Recall Curve (AUPRC) fails to improve.

The LightGBM, XGBoost and random forest classifiers are based on decision trees. Decision

trees are supervised learning algorithms. The input is given at the “root node” and different

decisions are made about the data which splits the data into further decision nodes until a “leaf

node” is reached at which point the data is classified. The main advantage of decision trees

is that it is easy to interpret. As decision trees are meant to mimic the process of “decision

making”, a decision tree classifier will be used as a baseline model to compare the performance

of the other models. This baseline model will also have a limited number of variables based
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on literature, whereas the other models will rely on as many variables as possible from the data.

From literature, new-onset AF in the ICU is more likely to occur due to advanced age, being male,

having increased heart rate, an electrolyte imbalance, illness severity and the use of vasopressors.

As such these variables will be used in the baseline classification. Lactate levels will be used as

an indicator of illness severity.

Random forest ensembles are constructed of many decision trees where the output of the random

forest is the class selected by the majority of the decision trees. Fig. 3.9 shows how a random

forest can be constructed out of many decision trees, where there is a vote on the output of the

trees.

Relatively recently, gradient boosting decision trees have been developed and typically outper-

form random forest ensembles. One such gradient boosting framework is XGBoost which has

gained popularity for winning many ML competitions. In random forests, the decision trees

are built at the beginning whereas, in gradient boosting frameworks, decision trees are added at

each stage to compensate for the existing weak learners. LightGBM is a relatively new gradient

boosting framework that works similarly to XGBoost but tends to be much faster and requires

less memory to run. XGBoost was originally based on level-wise growth where the decision

trees were grown level by level. On the other hand, LightGBM uses a leaf-wise growth where

the leaf node with the highest loss is split into more nodes which is why it converges faster than

XGBoost however it is more prone to overfitting on smaller datasets. The HiRID dataset is large

enough for LightGBM to not overfit, hence why the LightGBM and XGBoost have similar per-

formances. Fig. 3.9 illustrates the difference between the models growing leaf-wise (LightGBM)

and level-wise (XGBoost).

3.6 Hyperparameter Optimisation

The best model from the evaluation will be chosen for hyperparameter optimisation. In this

project, the results will show that the XGBoost model performed the best. The optimisation

framework, Optuna, was used for hyperparameter optimisation of XGBoost.40 Optuna is also

compatible with all six of the binary classifiers used in this project. During hyperparameter

optimisation, the framework shuffles through the parameter space to find the best values for

each parameter, by using AUPRC as its evaluation metric. The parameters that achieve the
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highest AUPRC value are the best parameters for the task. The more iterations the optimiser

goes through, the more of the parameter space can be searched. More iterations require greater

computation time and power. To find the best possible performing model, the UCL’s Myriad high

performance computing cluster is used to search through many more parameter combinations that

would otherwise take a very long time on a local machine. The optimiser was run for 5000 trials.



Chapter 4

Results

4.1 Initial Results

There are many classes of binary classifiers to choose from, each of which works in different

ways. Several binary classifiers can be evaluated to see which is the best for atrial fibrillation (AF)

prediction. Furthermore, these classifiers are initially tested on four future prediction windows

(4, 6, 8 and 10) to see which prediction window is the best for AF prediction. Hyperparameter

optimisation of the best classifiers will produce even better AF prediction results.

In these initial results, five different binary classifiers are compared: Light Gradient Boosting

Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), logistic regression, random for-

est and a fully connected deep learning model made in Keras, using only default parameters.

The usual evaluation metric for binary classification is the Area Under the Receiver Operating

Characteristic Curve (AUROC) which delineates the balance between the true positive rate and

the false positive rate. However, the AF prediction data is highly imbalanced which means that

the AUROC will give an optimistic measure of how well the classifier performs. The Area Under

the Precision-Recall Curve (AUPRC) is more illustrative of the performance of a classifier with

imbalanced data. Recall describes the number of correct positive predictions out of all positive

predictions made whereas precision quantifies the number of correct positive predictions made.

Both recall and precision are focused on the minority positive class as opposed to the majority

negative class. The AUPRC is, therefore, the ideal metric as, in the context of event prediction,

the positive class is the most important.

The complexity of a deep learning model architecture can greatly affect prediction performance.
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Table 4.1: Table showing the patient characteristics of the control and case patients used to train the ML
model for AF prediction. Patients who develop AF within two hours, or have a length of stay
less than two hours were filtered out

Case Control
Total Patients 4598 (13.7%) 28920 (86.3%)
Male 2893 (67.1%) 17443 (64%)
Female 1420 (32.9%) 9792 (36%)
Age
Mean 69.8 ± 11 59.3± 15.8
Median
Range 20-90 20-90
Mortality
Alive 4017 (88.8%) 27239 (94.7%)
Dead 507 (11.2%) 1517 (5.3%)
Patient Type
Cardiovascular Non-surgical 1063 (21.4%) 3539 (11.2%)

Surgical 958 (19.2%) 7685 (24.2%)
Neurological Non-surgical 821 (16.5%) 5211 (16.4%)

Surgical 261 (5.2%) 4368 (13.8%)
Gastrointestinal Non-surgical 367 (7.4%) 2282 (7.2%)

Surgical 236 (4.7%) 1712 (5.4%)
Trauma Non-surgical 149 (3%) 1507 (4.8%)

Surgical 46 (0.9%) 407 (1.3%)
Pulmonary 538 (10.8%) 1997 (6.3%)
Sepsis 201 (4%) 541 (1.7%)
Other 90 (1.8%) 625 (2%)
Surgical Respiratory 71 (1.4%) 678 (2.1%)
Metabolic/Endocrinology 71 (1.4%) 592 (1.9%)
Surgical Gynecology 40 (0.8%) 304 (1%)
Surgical Orthopedics 32 (0.6%) 124 (0.4%)
Hematology 20 (0.4%) 84 (0.3%)
Surgical Urogenital 13 (0.3%) 70 (0.2%)
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Before comparing the five binary classifies, several Keras models, of different complexities, were

first compared.

Figure 4.1: Comparison of fully connected neural networks using Keras for AF prediction, six hours in
advance. The first number indicates number of nodes per layer and the second number is the
number of layers e.g. keras 8 2 means two layers of eight nodes.

Fig. 4.1 is a comparison of Keras models that vary in complexity. In general, the eight nodes

per layer and the 64 nodes per layer achieved better results than the 16 nodes per layer despite

being intermediate. The 16 nodes per layer also had the highest standard deviation. The best

performing model was the three layers with eight nodes in each layer, so this architecture was

chosen for comparison with the other binary classifiers.

Table 4.2 shows the AUPRC for AF prediction for five different binary classifier models (not

including the baseline) and four different prediction windows, where the models are initiated

with default parameters and the Keras model has three layers of eight nodes. Table 4.2 shows that

the models at each prediction window have similar AUPRC values which suggest that the models

are almost equally skilled at predicting 4, 6, 8 and 10 hours ahead. The lack of variation suggests

that the time range is not significant i.e. there would likely be a greater range in AUPRC if the

prediction window was increased to 24 or 48 hours. The random forest classifier was the worst-

performing whereas the XGBoost had the best performance. Out of every prediction window for

XGBoost, the 4-hour and 6-hour had the greatest AUPRC values, when taking into account the

standard deviation. The 6-hour prediction window was deemed the best prediction window. The

6-hour time window was chosen over the 4-hour time window as it is more helpful to clinicians
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Table 4.2: Initial AF prediction results. Five binary classifier models and four prediction windows are
compared using the AUPRC metric.

Area under Precision-Recall Curve
Prediction Window

Model 4 6 8 10
Logistic Regression 0.06 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00
Keras 0.28 ± 0.02 0.26 ± 0.08 0.27 ± 0.04 0.29 ± 0.02
Random Forest 0.26 ± 0.01 0.26 ± 0.01 0.26 ± 0.01 0.26 ± 0.00
LightGBM 0.47 ± 0.01 0.46 ± 0.01 0.45 ± 0.01 0.44 ± 0.01
XGBoost 0.53 ± 0.01 0.52 ± 0.00 0.51 ± 0.01 0.51 ± 0.01

in the Intensive Care Unit (ICU) to have access to AF prediction information earlier.

Fig. 4.2 shows the results for each binary classifier after 10-fold stratified cross-validation, where

the shaded area shows the standard deviation between folds. The receiver operating character-

istic curve is not an ideal measure for classifier performance due to the high imbalance in data,

however, it is included as a sanity check.

Figure 4.2: Five binary classification results using default parameters for predicting atrial fibrillation
within six hours.

Notably, the Keras model has a high standard deviation compared to the other models. The same

model in Fig. 4.1 yielded a mean AUPRC of 0.3 whereas in Fig. 4.2 shows a mean AUPRC of

0.26 with a standard deviation of 0.08. This is due to the stochastic nature of neural networks,

the weights on all the nodes are initialised randomly therefore as they undergo gradient descent,

the weights will reach different minima and therefore have different performances.
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Table 4.3: Time taken to train each model 10 times. Training times will be different depending on what
machine is used.

Model Time taken to evaluate 10 fold (mins)
Baseline (decision tree, fewer variables) 0.51

Logistic Regression 2.09
Keras (batch size = 512, average 30 epochs) 34.66

Random Forest 8.52
LightGBM 0.54
XGBoost 7.81

Table 4.3 shows the amount of time it took to train all of the models for 10 fold cross-validation.

On average LightGBM took the fastest time to train, taking only 0.54 minutes, whereas XGBoost

took 7.81 minutes. A short computation time is highly desirable in a prediction model as, in a

real-world setting, having more time to take action on these ML predictions is vital. The baseline

model took only 0.02 minutes less time to train than the LightGBM. It is to be expected that the

baseline model should train the fastest because it is a simpler binary classifier with fewer vari-

ables and therefore less data from which to train. As the variables are grouped every two hours,

7.81 minutes is a relatively short amount of time, therefore XGBoost would still be useful in a

real-world setting. XGBoost is therefore still the best model, with a relatively fast training time,

the highest AUPRC value, consistency and ease of explainability. Fig 4.4 shows the confusion

matrix for the XGBoost predictions. To produce an even better model, hyperparameter optimisa-

tion was performed on XGBoost using the Optuna library over 5000 iterations, maximising the

AUPRC. Optuna was able to find models that achieved a higher AUPRC than the default but this

was at the expense of the area under the receiver-operating curve (AUROC). This would not be a

problem as the main metric used for evaluation was AUPRC however the AUROC was close to

the baseline, meaning that the results were inconsistent. AUROC should naturally be close to 0.9

because of the large data imbalance. However, a better XGBoost model was found after manual

hyperparameter optimisation and the result is plotted in Fig. 4.3.

The optimised XGBoost model shows an improvement on the default XGBoost model. Due to

the infinite possible combinations of hyperparameter values, it is uncertain whether it is the best

possible model. For comparison, a baseline model was also plotted in Fig. 4.3. This baseline is

meant to mimic “decisions” made by the clinician dependent on features that have known, but

not yet validated, correlation to new-onset AF. Therefore, a decision tree classifier was trained
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Figure 4.3: The results for predicting AF six hours in advance using a XGBoost model, an optimised
XGBoost model and a baseline model which is a decision tree with fewer variables chosen
based on previous literature.

on variables including static features, heart rate, electrolytes and the presence of vasopressors.

Figure 4.4: Confusion matrix of the optimised XGBoost model, predicting six hours in advance

The confusion matrix Fig. 4.4 shows that there is one false alert for every true alert and 2.6

missed alerts for every true alert.
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4.2 SHAP values
SHapley Additive exPlanations (SHAP) comes from the game theory concept of the Shapely

value. SHAP values are a way to explain the outputs of machine learning models. In this case,

SHAP values will highlight which variables, and whether these variables are relatively high or

low, contribute most to determining if a patient will develop AF.38

Explainability is highly important in machine learning, especially in the application to health-

care. Clinicians and patients are unlikely to trust black-box machine learning model predictions.

Examining SHAP values can help determine if the machine learning model is working correctly

by comparing it to previous literature and clinician experience.

Figure 4.5: SHAP values of the XGBoost model. Variables are plotted in order of feature importance, red
values mean that higher values are more important whereas blue values indicate that lower
values are more important for a given variable. Only the top most important variables are
shown, with the other variables summed together.

Fig. 4.5 is a beeswarm plot of the SHAP values corresponding to the XGBoost model. It shows
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that advanced age and increased maximum heart rate are the highest contributors to the AF

prediction which is consistent with previous literature. The third most significant variable is

the length of stay at the measurement time point where lower values mean the patient is more

likely to have AF. This is consistent with Fig. 3.7 where the majority of patients developed AF

soon after admission. Consistent with the literature, the use of vasopressors also increases the

likelihood of AF and males are more likely to develop AF than females (males are labelled with

1 and females are labelled with 0).

The SHAP values can also help the user identify possible confounding. Antithrombotics such

as anticoagulants are often used on patients that develop AF to prevent blood clots that lead to

stroke. As antithrombotics are one of the most indicative variables for AF, according to the

SHAP values, the machine learning model may be learning from the clinician actions. However,

this would be difficult to prove as antithrombotics could be used for other reasons.

Previous literature suggests that AF may also occur due to a low potassium level and one of the

treatments for AF is to increase the patients’ potassium level. Fig. 4.5 shows that high levels

of potassium are indicative of AF. However, this could be due to the clinicians increasing the

patients’ potassium levels due to their AF diagnosis. Again, the machine learning model is learn-

ing from the clinicians. However, instances, where the clinician administers potassium to the

patient, are recorded as a pharmacological variable named “potassium”. This pharmacological

variable is not listed as among the topmost important variables according to the SHAP values.

If the machine learning model was truly learning from the clinicians’ use of potassium, then

the “potassium” variable should be one of the most important. This suggests there may not be

confounding due to potassium levels.

4.3 Predicting Other Adverse Events

One of the main aims of this project was to make sure that Adaptable Forecasting Framework

in Real-tiMe (AFFIRM)was easily generalised to other prediction tasks. AFFIRMwas used to

predict tachycardia and circulatory failure.

AF is associated with tachycardia (increased heart rate). Predicting tachycardia may be a way

to indicate the possibility of AF. Tachycardia is much more common and can be labelled after

data collection with less human error compared to AF. The AFFIRM was therefore adjusted to
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predict tachycardia defined as a heart rate above 100 beats per minute. The results are shown in

Fig. 4.6 where an 8-hour prediction window was used.

Figure 4.6: Five binary classification results using default parameters for predicting tachycardia (¿ 100
bpm) within six hours.

Figure 4.7: XGBoost confusion matrix for predicting tachycardia.

Fig. 4.6 shows that AFFIRM is far more effective at predicting tachycardia compared to AF,

AUPRC = 0.91 compared to 0.59. This is likely due to the balanced dataset, where there is
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Figure 4.8: SHAP values from XGBoost, showing the most important features for predicting tachycardia.

approximately the same number of cases with tachycardia as without (46% case time points).

The very high performance of AFFIRM on tachycardia is also likely since tachycardia is defined

by one variable that already exists in the features. Fig. 4.8 shows that heart rate is by far the most

dominant feature for prediction.

In Hyland et al.’s paper, circulatory failure was defined as a lactate level less than 2 and mean

arterial pressure (MAP) greater than 65. They also predicted 8 hours into the future. These

parameters can be entered into AFFIRM and the results are shown below.

Fig. 4.9 show that AFFIRM works better for predicting circulatory failure than AF with an

AUPRC of around 0.60 (without hyperparameter optimisation). These results are similar to

the Hyland et al. paper where they achieved an AUPRC of 0.63. Understandably, AFFIRM

performs less well compared to Hyland et al.’s model because it has not been optimised for that

purpose. Hyland et al also used a more sophisticated feature set. Furthermore, Hyland et al.

made predictions every five minutes which is a more complex task.
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Figure 4.9: Five binary classification results using default parameters for predicting circulatory failure as
defined by Hyland et al. within eight hours.

Figure 4.10: XGBoost confusion matrix for predicting circulatory failure.

Hyland et al. calculated SHAP values for their prediction of circulatory failure. They found

that the top predictive features included maximal lactate, minimal MAP, age and time since

admission. Fig. 4.11 shows that AFFIRM also confirms the importance of these features with

the minimum MAP being the most important, the current length of stay (LOS) as the third most

important and maximal lactate at fifth. The agreement in SHAP rankings suggests that AFFIRM
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Figure 4.11: SHAP values from XGBoost, showing the most important features for predicting circulatory
failure.

is working correctly.



Chapter 5

Discussion

This project represents the first time attempt at atrial fibrillation (AF) prediction in the Intensive

Care Unit (ICU) within hours using only EHR data. New-onset AF in the ICU affects 5-46% of

patients and is associated with a longer length of stay and a greater chance of mortality. Early

prediction of AF using machine learning (ML) may be able to guide AF management in the ICU.

In this project, a framework called Adaptable Forecasting Framework in Real-tiMe (AFFIRM)

was created. Initially, the framework was built for AF prediction, but it is now generalised to

predict any adverse event. AFFIRM consists of three main stages preprocessing raw High time-

Resolution ICU Dataset (HiRID) data, preparing the data for classification and evaluating ML

models. Several machine learning algorithms are included in the AFFIRM framework including

the Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost), lo-

gistic regression, random forest and a deep learning model made using Keras. The user can also

specify their machine learning models.

AF prediction was evaluated using the five binary classifiers in AFFIRM for several prediction

windows. A prediction window is how far in advance the user wants to predict AF. Four predic-

tion windows were tested 4, 6, 8 and 10. Out of all the baseline binary classifiers, the XGBoost

model had the best performance for all prediction windows. The 4 and 6 hour prediction time

windows produced the best results with an Area Under the Precision-Recall Curve (AUPRC)

= 0.52 ± 0.00. The six-hour time window was chosen as it is beneficial to clinicians to have

knowledge earlier in advance.

Hyperparameter optimisation was performed on the XGBoost model using a random search for

the best value parameters. XGBoost has the advantage over other binary classifiers of having a
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relatively fast computation time and being transparent. It is simple to calculate SHapley Additive

exPlanations (SHAP) values from the XGBoost predictions and thereby determine which patient

variables were the most important during classification. Following the literature, these were

advanced age, increased heart rate and decreased mean arterial pressure.

Classification of AF is a particularly challenging task due to several factors. Unlike other adverse

events that have been predicted in the past, there is no explanation for AF. Also, AF can only

be diagnosed using an ECG. Therefore, unlike other events, the data cannot be annotated after

data collection. Therefore, accurate AF data is reliant on the clinician, accurately inputting

AF episodes into the database. However, AF can be transient and can look similar to other

arrhythmias therefore it could go undiagnosed or be misdiagnosed. Furthermore, AF usually

occurs over several hours, however, the HiRID system only allows for data collection at specified

time points rather than a range of time. Likely, clinicians may only document one time point

as AF within a whole time range. This was combated by grouping time point data into hours

and also filling in time points that were likely to contain AF due to the increased heart rate.

Furthermore, there is a very large data imbalance between the time points containing AF and the

time points not containing AF, around 5.47%.

These difficulties make ML-enabled AF prediction difficult and which is likely why there has

been no previous work done. Despite these difficulties, the final machine learning model

achieved an AUPRC of 0.59 ± 0.01 after 10-fold cross-validation. This AUPRC is compara-

ble to previous literature where Hyland et al. achieved AUPRC = 0.63 for circulatory failure and

Tomašev et al. achieved AUPRC = 0.297 for acute kidney injury.

To test its adaptability, AFFIRM was tested on two other adverse events with the same variables.

AFFIRM predicted AUPRC of 0.91 ± 0.00 and 0.60 ± 0.01 for tachycardia and circulatory failure

respectively with no hyperparameter optimisation.

AFFIRM was thought to predict tachycardia better than AF because of the balanced dataset,

however, circulatory failure is even more imbalanced than AF. Circulatory failure makes 2.8% of

case time points whereas AF has 5.5% of case time points. This suggests either that circulatory

failure is easier to predict with the variables used i.e. those variables are more predictive for

circulatory failure or there are many time points unlabelled AF time points due to human error

that cannot be labelled post data collection.
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The pharmacological data used in this project was represented very simply. The pharmacological

variables were grouped by drug class and its presence indicated with a binary flag. The drug

classes used were very generic e.g. vasodilators described a whole range of drugs designed

to decrease blood pressure. The vasodilators used in this project could have been subclassed

into drugs such as beta-blockers, calcium channel blockers or alpha-blockers. Despite having the

same main function, all of these drugs may have different effects on AF. Furthermore, continuous

dosages and the size of dosage of a particular drug can result in many types of outcomes that are

not captured by the use of simple binary indicators. More work is required to accurately describe

the effect of the drugs.

AFFIRM only works with HiRID data which is a single centred database. To be clinically use-

ful AFFIRM must be able to generalise to different patient populations and different hospitals

where there are different protocols for measurement e.g. frequency of measurement. Therefore,

AFFIRM needs to be evaluated on other databases such as the Medical Information Mart for

Intensive Care (MIMIC) database.

AF prediction can also be improved by examining multi-modal data. There is significant research

in AF prediction using electrocardiogram (ECG), so AF prediction could be improved by com-

bining information from ECG and Electronic Health Record (EHR). However, collecting ECG

and EHR at the same time for the same patient is challenging as they are collected using dif-

ferent computerised systems. Information leveraged from clinical notes using natural language

processing could improve AF prediction as clinical notes can provide a more detailed account of

a patients’ stay as well as including patient history. The HiRID database had the clinical notes

removed due to anonymisation issues, but there is a potential that the authors will anonymise the

notes and release them for general use.

Further work could also include stratifying the patients by diagnostic group e.g. whether the

patient had cardiac surgery. Post-cardiac surgery patients who develop new-onset AF are known

to exhibit unique characteristics compared to other patients in the ICU. Stratification was not

carried out in this project because stratifying the patients would reduce the already small number

of AF patients. If more data is collected, it would be easier to stratify patients with enough data

to train and test each cohort.
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Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck, et al. Early prediction

of circulatory failure in the intensive care unit using machine learning. Nature medicine,

26(3):364–373, 2020.
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